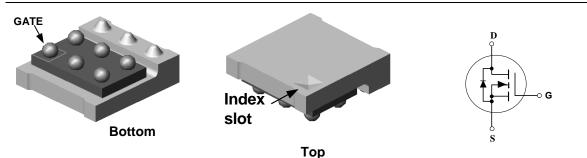


FDZ203N

N-Channel 2.5V Specified PowerTrench[®] BGA MOSFET

General Description

Combining Fairchild's advanced 2.5V specified PowerTrench process with state of the art BGA packaging, the FDZ203N minimizes both PCB space and $R_{DS(ON)}$. This BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultralow profile packaging, low gate charge, and low $R_{DS(ON)}$.


Applications

- Battery management
- Load switch
- Battery protection

Features

- 7.5 A, 20 V. $R_{DS(ON)} = 18 \text{ m}\Omega @ V_{GS} = 4.5$ $R_{DS(ON)} = 30 \text{ m}\Omega @ V_{GS} = 2.5 \text{ V}$
- Occupies only 4 mm² of PCB area. Less than 40% of the area of a SSOT-6
- Ultra-thin package: less than 0.80 mm height when mounted to PCB
- Ultra-low Q_g x R_{DS(ON)} figure-of-merit.
- High power and current handling capability.
- RoHS Compliant

.

Absolute Maximum Ratings TA=25°C unless otherwise noted

Parameter Drain-Source Voltage		Ratings	Units	
		20	V	
Gate-Source Voltage		±12	V	
Drain Current – Continuous	(Note 1a)	7.5	A	
– Pulsed		20		
Power Dissipation (Steady State)	(Note 1a)	1.6	W	
Operating and Storage Junction Temperature Range		-55 to +150	°C	
	Drain-Source Voltage Gate-Source Voltage Drain Current – Continuous – Pulsed Power Dissipation (Steady State)	Drain-Source Voltage	Drain-Source Voltage 20 Gate-Source Voltage ±12 Drain Current - Continuous 7.5 - Pulsed 20 Power Dissipation (Steady State) (Note 1a) 1.6	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	67	°C/W
$R_{\theta JB}$	Thermal Resistance, Junction-to-Ball	(Note 1)	11	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	1	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
203N	FDZ203N	7"	8mm 300	

©2008 Fairchild Semiconductor Corporation

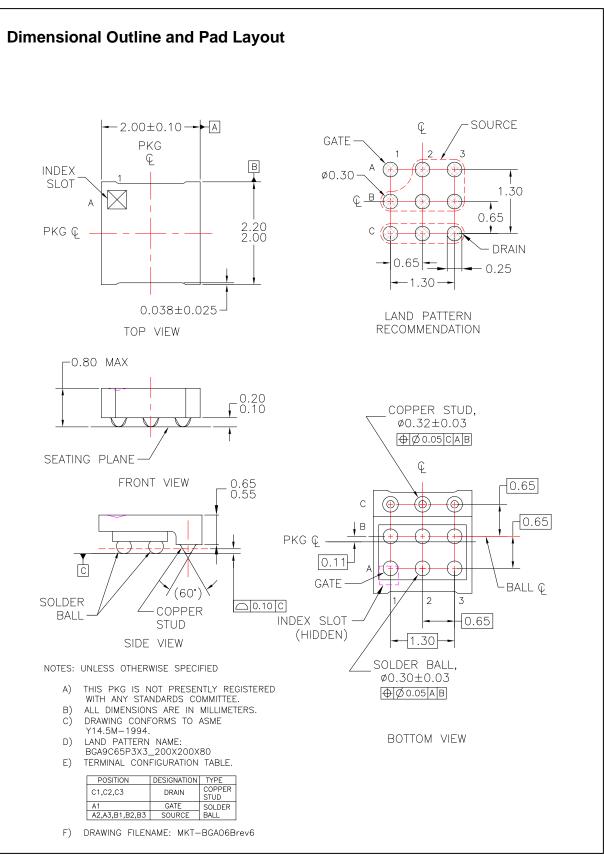
FDZ203N

April 2008

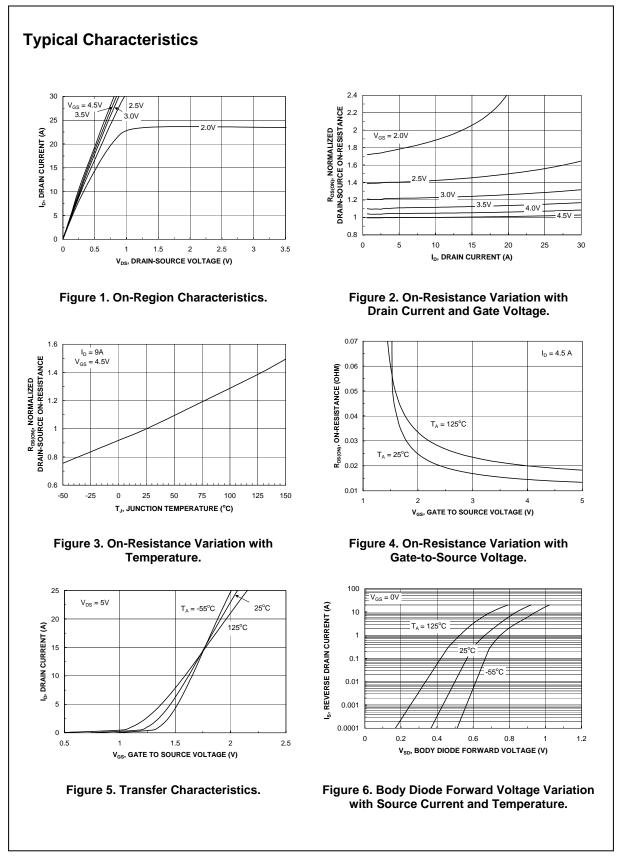
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	20			V
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		14		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 16 V$, $V_{GS} = 0 V$			1	μA
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 12 V$, $V_{DS} = 0 V$			100	'nA
GSSR	Gate-Body Leakage, Reverse	$V_{GS} = -12 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
	acteristics (Note 2)				•	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	0.6	0.8	1.5	V
$\Delta V_{GS(th)}$ ΔT_J	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C		-3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 4.5 V,$ $I_D = 7.5 A$ $V_{GS} = 2.5 V,$ $I_D = 5.5 A$		14 20	18 30	mΩ
		V _{GS} = 4.5 V, I _D = 7.5 A, T _J =125°C		20	28	
D(on)	On–State Drain Current	$V_{GS} = 4.5 V$, $V_{DS} = 5 V$	20			Α
g FS	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_D = 7.5 \text{ A}$		33		S
Dvnami	c Characteristics					
Ciss	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$		1127		pF
Coss	Output Capacitance	f = 1.0 MHz		268		pF
Orss Contraction	Reverse Transfer Capacitance			134		pF
Switchir	ng Characteristics (Note 2)	· · · · ·			•	
d(on)	Turn–On Delay Time	$V_{DD} = 10V, \qquad I_D = 1 A,$		8	16	ns
	Turn–On Rise Time	$V_{GS} = 4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		11	20	ns
d(off)	Turn–Off Delay Time			26	42	ns
-()	Turn–Off Fall Time			8	16	ns
2 _a	Total Gate Charge	$V_{DS} = 10 \text{ V}, \qquad I_D = 7.5 \text{ A},$		11	15	nC
ຊື່	Gate-Source Charge	V _{GS} = 4.5 V		2	1	nC
2 _{gd}	Gate–Drain Charge]		3		nC
	ource Diode Characteristics	and Maximum Ratings				
s	Maximum Continuous Drain–Source				1.3	Α
/ _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 1.3 A$ (Note 2)		0.7	1.2	V
	Diode Reverse Recovery Time	I _F = 9A,	1	20		nS
trr	Didde Reverse Recovery Time			20		110

Notes:

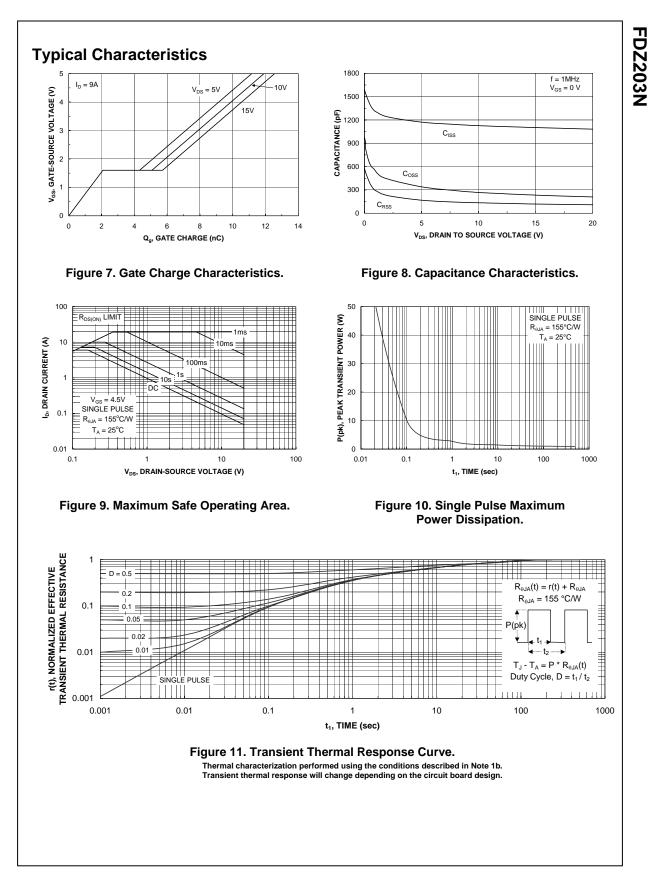
 R_{0,JA} is determined with the device mounted on a 1 in² 2 oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. The thermal resistance from the junction to the circuit board side of the solder ball, R_{0,JB}, is defined for reference. For R_{0,JC}, the thermal reference point for the case is defined as the top surface of the copper chip carrier. R_{0,JC} and R_{0,JB} are guaranteed by design while R_{0,JA} is determined by the user's board design.



 $Scale 1: 1 \mbox{ on letter size paper} \\ 2. 2. \qquad \mbox{Pulse Test: Pulse Width < } 300 \mu \mbox{s, Duty Cycle < } 2.0\%$


67 °C/W when a) mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB

b) 155 °C/W when mounted on a minimum pad of 2 oz copper FDZ203N


FDZ203N

FDZ203N Rev.E7(W)

FDZ203N

FDZ203N Rev.E7(W)

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ ACEx® PDP-SPM™ The Power Franchise[®] F-PFS™ Power-SPM™ Build it Now™ power CorePLUS™ **FRFET**® PowerTrench[®] franchise CorePOWER™ Global Power ResourceSM Programmable Active Droop™ TinvBoost™ QFET® CROSSVOLT™ Green FPS™ TinyBuck™ TinyLogic® QS™ CTL™ Green FPS™ e-Series™ GTO™ TINYOPTO™ Current Transfer Logic™ Quiet Series™ **EcoSPARK**[®] IntelliMAX™ RapidConfigure™ TinyPower™ ISOPLANAR™ EfficentMax™ Saving our world 1mW at a time™ TinyPWM™ EZSWITCH™ * MegaBuck™ SmartMax™ TinyWire™ µSerDes™ MICROCOUPLER™ SMART START™ MicroFET™ SPM® N MicroPak™ STEALTH™ airchild® UHC® MillerDrive™ SuperFET™ Fairchild Semiconductor® MotionMax™ SuperSOT™-3 Ultra FRFET™ FACT Quiet Series™ Motion-SPM™ SuperSOT™-6 UniFET™ SuperSOT™-8 FACT® **OPTOLOGIC**[®] VCX™ FAST® **OPTOPLANAR[®]** SuperMOS™ VisualMax™ FastvCore™

* EZSWITCH[™] and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FlashWriter[®] *

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.